

The Go₂Vent is the Best Option

EASY AS 1,2,3!

Mew Easy Set up Labeling

- New 1,2,3 labeling allows for ease of use when setting the GO₂VENT up on a patient
- New color coded labeling to relate settings to pressure manometer ranges

New Manometer

- New VORTRAN Manometer is certified MRI Conditional
- GO₂VENT is now completely certified MRI Conditional
- Perfect for MRI/CT, transport, and disaster preparedness

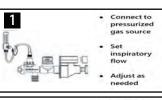
New Entrainment Controls

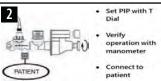
- New quick change entrainment allows for changing from 50% to 100% FiO2 during operation
- New white and green colors used to identify supply gas connection for both the U.S. and European standards

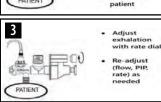
Simple Solutions for Difficult Situations!

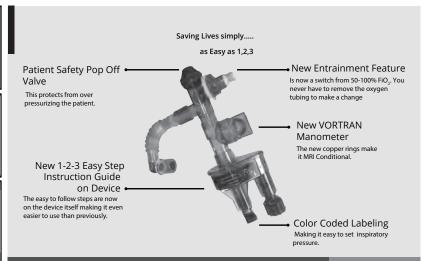
Call us at:

800-434-4034


www.vortran.com


facebook.com/vortran


twitter.com/vortran1



EASY AS 1,2,3! Saving Lives Simply Accessories

The New Vortran Manometer

GO₂VENT and Manometer have been tested and is certified as MR Conditional per Dr. Frank Shellock

Approximate Operating Time on Full Oxygen Cylinders

Approximate operating time on run oxygen cynnucis								Oxygen Cylinder				
Set supply flow rate (LPM)	6	8	10	12	15	20	25	35	36	40	Volume	Cvlinder
Approximate operating time	67	50	40	33	27	20	16	13	11	10	400 l	2 liter
'' '	100	80	60	50	40	30	25	20	18	16	625 l	E-Tank
(Min)	167	125	108	83	67	50	40	33	29	25	1000 l	5 liter

	Specifications						
1	For persons body mass	10 Kg and above					
2	Ventilatory frequency	Auto-adjusting to lung capacity					
3	Adjustable peak pressure range	10 to 45 cm H ₂ O					
4	Operating environmental limits	-18 to 50 °C					
5	Storage environmental limits	-40 to 60 °C					
6	Oxygen delivery	>85% O_2 when supplied with 100% O_2					
7	Gas inlet	DISS gas connection					
8	Patient connector	Ø15 mm female,Ø22 mm male					
9	Dead Space	4 ± 3 mL					
10	Inspiratory resistance	3 ± 1 cm H_2O / sec					
11	Expiratory resistance	3 ± 1 cm H_2O / sec					
12	PEEP 1/5th of Peak Pressure	2 to 9 cm H ₂ O					
13	External dimensions	9.5" x 4" x 3"					
14	Weight	117 grams					
15	Applicable guidelines	ASTM F920 - 93 (Reapproved 1999)					
16	Manometer Accuracy	$\pm 2 \text{ cm H}_2\text{O from } 00 \sim 20 \text{ cm H}_2\text{O}$ $\pm 3 \text{ cm H}_2\text{O from } 20 \sim 40 \text{ cm H}_2\text{O}$					

	± 5 cm H ₂ O from 40 [∞] 60 cm H ₂ O							
	Poforoncos							
	References							
1	A Berthieurnme, Dave Swift RRT, Evaluation of the Vortran Automatic Resuscitator and the Vortran Airway Pressure Monitor in the MRI Environment.Respiratory Care, Vol.8.2- April-May 2013							
2	Robert Kohler, EMT-P, The Control of End Tidal CO2. Respiratory Therapy, Vol. 7 No. 2 - April-May 2012							
3	Dave Swift, RRT, RRCP - Senior Therapist Ottawa Hospital, Ottawa, Ontario, Canada, Preparing for Mass Casualties & Mechanical Ventilation Alternatives, Presented at 48th AARC International Respiratory Congress in Tampa, FL, Oct 5-7, 2002							
4	Steven J. Weiss, Todd Filbrun, Chad Augustin, Ray Jones and Amy Ernst, UC Davis Medical Center: Sacramento, CA, Sacramento City Fire/EMS: Sacramento, CA. ABSTRACT: An Automatic Transport Ventilator (ATV) vs. Bag Valve Mask (BVM) for ventilation during EMS Transport. Academic Emergency Volume 11, Number 5 592, May 2004							
5	Otto G . Raabe, Ph.D. and Mario Romano, RCP Comparison of Respirtech PRO and Ambu SPUR Resuscitators During Simulated CPR							
6	Michael Rossini, M.D., Barry Hickerson, EMT-P Preliminary Evaluation of a Lightweight, Disposable Emergency Transport Ventilator in the Aeromedical Setting							
7	Mario Romano , RCP , Otto, G. Raabe, Ph.D. William Walby, MS and Timothy E. Albertson, MD, Ph.D., The Stability of Arterial Blood Gases During Transportation of Patients Using the Respirtech PRO, American Journal of Emergency Medicine, May 2000							

New Entrainment Feature

*Feature allows for ease of use for changing from 50% FiO₂ to 100%

*This allows for blending of air and oxygen at the 50% level and helps with conservation of oxygen when transporting using a bottle of oxygen

Part Number 6123

Simple Solutions for Difficult Situations

Call us at:
\$ 800-434-4034

www.vortran.com
facebook.come/vortran